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ABSTRACT: This article describes a set of 275 rules, developed over
an 18-year period, used to identify compounds that may interfere with
biological assays, allowing their removal from screening sets. Reasons
for rejection include reactivity (e.g., acyl halides), interference with
assay measurements (fluorescence, absorbance, quenching), activities
that damage proteins (oxidizers, detergents), instability (e.g., latent
aldehydes), and lack of druggability (e.g., compounds lacking both
oxygen and nitrogen). The structural queries were profiled for
frequency of occurrence in druglike and nondruglike compound sets
and were extensively reviewed by a panel of experienced medicinal
chemists. As a means of profiling the rules and as a filter in its own
right, an index of biological promiscuity was developed. The 584 gene targets with screening data at Lilly were assigned to 17
subfamilies, and the number of subfamilies at which a compound was active was used as a promiscuity index. For certain
compounds, promiscuous activity disappeared after sample repurification, indicating interference from occult contaminants.
Because this type of interference is not amenable to substructure search, a “nuisance list” was developed to flag interfering
compounds that passed the substructure rules.

■ INTRODUCTION

Screening of large compound collections is perhaps the most
common method for identifying novel leads toward new drugs.
However, several decades of experience have shown that many
screening hits derive their activity from undesirable mecha-
nisms. In addition to simple chemical reactivity, more subtle
mechanisms such as aggregation1 and redox cycling2 can
produce misleading screening results. Interference with assay
readouts via light absorption, fluorescence, etc. can also cause
false hits.2 The first clue that a compound acts by an
undesirable mechanism is often promiscuity, defined as activity
of the same compound at several unrelated biological
targets.3−5 Since it is unlikely that a molecule would occupy
multiple, diverse binding sites by the types of simple,
noncovalent interactions usually seen in specific screening
hits, a promiscuous activity profile usually implies a nonspecific
mode of action.
The problems mentioned above have led to the development

of structural queries to identify compounds that are unstable,
reactive, promiscuous, or otherwise unsuitable to be used as
input for drug discovery programs.4−9 At Lilly, such queries
have been developed and refined since the mid-1990s, resulting
in a set of 275 rules used to remove undesirable compounds.
These queries are used both to prefilter screening sets and to
pare down lists of compounds offered by outside suppliers. The
current publication provides a detailed account of the Lilly
rejection rules and the computational engine used to
implement them. In addition, a novel index of promiscuity is

applied to the Lilly activity database and the structural motifs
identified are used to refine the rejection rules.
An important impetus for publishing our internal rejection

rules is Lilly’s Open Innovation Drug Discovery initiative
(OIDD10). OIDD allows academic and biotechnology
collaborators to submit novel molecules for no-charge in vitro
testing against a variety of Lilly assays. Current tests include
assays related to strategic areas of interest such as oncology,
endocrine, cardiovascular, and neuroscience. Because of the
volume of screening requests, it has been necessary to filter the
compounds computationally before testing. The first step of the
filtration process, resulting in the largest number of rejections,
is the application of the Lilly structural filters. Early rejection of
molecules unlikely to lead to a new drug helps both Lilly and
the OIDD submitters, focusing resources on those molecules
most likely to succeed. Questions of course arise as to why
certain compounds are rejected. The current article is intended
to provide guidance to medicinal chemists about structural
features that can detract from the value of their compounds in
the process of screening for new drugs.

■ METHODS

Software and queries are available at https://github.com/
IanAWatson/Lilly-Medchem-Rules.git or from watson_ian_a@
lilly.com.
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Substructure Searching Tools. Many concepts voiced by
the medicinal chemists who helped shape the rules were not
readily amenable to traditional atom-matching substructure
search specifications: an atom that is part of a fused ring system,
no attached heteroatoms, no match if there is an electron
withdrawing group on the ring, only reject if more than three
occurrences, two heteroatoms in an aromatic ring, etc. To
facilitate implementation of such concepts, a traditional atom
matching specification was augmented with the ability to create
a variety of chemically meaningful specifications about the
search conditions. The search engine consists of three separate
executables. A first pass, written in C++ for speed, quickly
eliminates molecules with obvious flaws: too many atoms, too
few atoms, too many rings, excessively large rings or ring
systems, nonallowed elements, isotopes, valence errors, lack of
pharmacophoric features, etc. Another executable performs
substructure searches and rejects all matched molecules. A third
executable applies demerits and rejects molecules that
accumulate excessive demerits. The query file format for the
second and third executables is an extension of the MSI
Cerius2 file format.11 A detailed description of the search
engine, along with text of the substructure queries, is included
in Supporting Information.
Data Sets. The Available Chemicals Directory (ACD)

database, version 2010.3, and MDL Drug Data Report
(MDDR), version 2009.1, purchased from Symyx Corp, were
profiled versus the structural filters. Because of recent changes
in the size and content of ACD, a version from early 2005 was
also profiled. The database of internal Lilly compounds
consisted of those with at least 5 mg inventory as of July
2010. Third-party compounds were from a compendium of
offerings from 11 vendors assembled in April 2009; exact
matches to Lilly compounds with at least 20 mg inventory were
excluded from the list. The number of compounds in each data
set is listed in Table 2 (see Results and Discussion).

Activity Data. Whenever possible, Lilly screening assays are
annotated with links to Entrez gene names. Activity data for
Lilly compounds (with or without current inventory) were
extracted along with the gene names. An active result was
defined as a concentration−response curve with an IC50 of 9.9
μM or less or a single-point result of at least 90% inhibition,
regardless of concentration. By these criteria, 2.1 million out of
120 million data points were defined as active.

■ RESULTS AND DISCUSSION

History of the Lilly Rules. The need for a set of rejection
rules became apparent when one of us (R.F.B.) designed the
first general diversity screenset at Lilly in 1991. Although the
screenset was successful in producing usable hits, including a
series that progressed to phase III clinical trials,12 scrutiny of
the hits revealed many compounds with poor druggability (for
two examples, see Figure 1). This experience was taken into
account in the design of a druglike diversity screenset in 1994.
Each compound was required to have at least moderate
similarity to a known drug candidate (at least 60% MACCS
similarity to a compound in the Comprehensive Medicinal
Chemistry or MDDR database) and in addition was required to
pass 23 structural filters. The filters were written as MACCS
queries by Stephen W. Kaldor and included queries for well-
known functional groups such as Michael acceptors, acid
halides, etc.
For the next 4 years, the druglike screenset described above

was the core set used in all HTS campaigns. In the course of
screening, additional undesirable compounds were identified,
resulting in the creation of additional rules. Reasons for
rejecting these compounds fell into one or more of three
categories: reactivity or instability, nuisance activity, and manual
rejection by medicinal chemists. Although chemist acceptance
is subjective,13 it is often an insurmountable obstacle to
expansion of a hit. The new queries were aggregated with the

Figure 1. Examples of nondruggable hits from an early diversity screenset.
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previous Kaldor queries in a script in MACCS sequence
language.
In 1995, one of us (I.A.W.) created a substructure query

engine on the UNIX platform (see Supporting Information).
The new engine was more than 2 orders of magnitude faster
than MACCS and had features that facilitated the creation of
complex and highly specific queries. The new engine also
allowed a more nuanced approach: features that were
considered undesirable but not crippling could be assigned
demerits, which would not result in rejection unless total
cumulative demerits passed a predetermined threshold (100 by
default). For instance, each occurrence of an ester in a molecule
was assigned 35 demerits because of the group’s vulnerability to
hydrolysis in storage or in biological assays. The previous
queries were ported to the new engine. Over the next 6 years,
additional rules were created on an ad hoc basis, resulting in
over 200 rules by the beginning of 2004.
With the proliferation of rules and their widespread

application to both primary and follow-up screensets, it became
necessary to systematize and standardize the rules. A working
group was created for the purpose of enumerating and
classifying the rules, reviewing the existing rules, and when
necessary creating new ones. The group consisted of four high-
ranking medicinal chemists, responsible for decisions on
reactivity and chemist acceptance, and five computational
chemists, responsible for statistical analysis and conversion of
medicinal chemists’ guidance into substructure queries.
Profiling of various databases revealed 246 rejection reasons,

which were broken into classes and subclasses. For instance, the
acylated_enol rule (Table S1) was assigned to the class
“acylating” and the subclass “ester”. By sorting on class and
then subclass, it was possible to identify redundancies. For
example, there were 11 Michael acceptor rules that had sprung
up to deal with individual examples of compounds deemed
undesirable. After an analysis of the reaction mechanism, it was
possible to reduce the 11 rules to 2: michael_rejected for
strongly reactive compounds without electron-donating groups,
and michael_demerited for more weakly reactive compounds
with electron-donating groups.
The rules were divided into three categories: rejections,

demerits, and innocuous. Rules falling into the last category
were deleted. The full set of rules was reviewed by one team
member, and only the ∼60 rules deemed potentially
controversial were carried on to the full group. For a more
thorough review, the group was split into two, and each
remaining rule was rated independently by both subgroups.
The ∼20 rules where the two subgroups differed were discussed
by the full team. Criteria included reactivity, stability, nuisance
activity, and chemist acceptance. In addition, the full group
reviewed the numeric penalty value assigned to each demerit
rule.
After rating the existing rules, the group looked for gaps in

the rules. The main mechanism was the clustering and hand-
inspection of 2340 promiscuous screening actives that passed
existing rules. The list of promiscuous compounds was
generated by a preliminary version of the method described
later in this paper. An additional ∼15 rules were created as a
result of this exercise. For example, a rule was created to reject
biotin analogues that interfere in assays that use avidin−biotin
coupling. The final set consisted of 222 rules, which
subsequently grew to 275 at the time of the writing of this
manuscript.

An important use of the Lilly rules has been to filter
compound offerings from outside vendors (“third-party
offerings”). Because the number of compounds available is
typically ∼100× the number that can be purchased in a given
year, a fairly stringent threshold of 100 demerits was used to
ensure that money was not wasted on mediocre compounds.
However, a rejection threshold of 100 demerits is not
necessarily suitable for other applications. For instance, the
cost of screening a compound already in the collection is
typically less than 10% of the cost of purchasing a compound.
For the purpose of hit follow-up, it makes sense to ease the
stringency of the filters to include somewhat less desirable
compounds that nevertheless may provide useful information at
modest cost. Therefore, an option to run a “relaxed” version of
the rules with a demerit cutoff of 160 was made available. The
relaxed version of the rules is used by the OIDD collaboration.
It is also possible to run the rejection rules alone, without
demerits or heavy-atom cutoffs (“outright rejection” version).
Because the demerit information is sometimes used computa-
tionally to prioritize compounds, all rejection rules are assigned
demerits equal to the threshold for rejection on demerits alone:
100 demerits when running in regular mode and 160 in relaxed
mode.

Open Innovation Drug Discovery. When Lilly launched
OIDD in 2009, there was a strong desire to ensure that the
molecules accepted for testing would have the highest possible
chance of resulting in viable chemical starting points for drug
discovery programs. As part of the OIDD agreement, Lilly
personnel are not permitted to see submitted structures, so
only automated computational methodologies can be applied in
the selection process. One of the checks OIDD performs is
application of the Lilly structural filters. As of May 2012, 72 000
structures had been submitted to OIDD. Of these, 56 000
passed the Lilly structural filters. This pass rate is slightly better
than those we have historically seen from commercial
compound offerings. Reasons for failure are reported back to
the submitter. An alternative channel is available for
compounds that fail the rules but are of specialized interest,
such as natural products, emerging areas of chemical diversity,
etc.14

Description of the Individual Rules. The Supporting
Information contains a table listing the individual rules and
their match rates against various compound databases,
accompanied by an example structure for each rule (Tables
S1 and S2). The rules fall into 17 classes (Table 1), which will
be described below.

Acylating Agents. This is by far the largest class, with 10
subclasses and 51 rules. A few of the rules in this class simply
flag structures that may be unstable under assay conditions
(e.g., “ester”), but most guard against more troublesome
behavior. Many acylating agents inhibit serine or cysteine
hydrolases by reacting with the active serine or cysteine,
respectively.15 The acylated enzyme may recover slowly or not
at all. Since the main driver of potency is a simple chemical
reaction, it is difficult to obtain specificity starting with this type
of mechanism. As a result, this mechanism has fallen out of
favor in the pharmaceutical industry, creating a need to identify
and reject potential acylating agents. In addition, some acylating
agents produce hydrolysis products that interfere with assays
(e.g., thioester) or cause toxicity (e.g., acylhydrazides). Fused β-
lactams such as penicillins and cephalosporins are very
successful drugs, but the compounds are not stable on long-
term storage at room temperature and the degradation
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products often are active across a wide variety of targets (R.F.B.,
unpublished observation). The parent compounds also acylate
active-site serine or cysteine of many hydrolase enzymes, a
mechanism of action that is considered undesirable for most
current projects that target these enzymes.
Aldehydes and Ketones. This rule class contains five

subclasses and 29 individual members. Like the acylating
agents, aldehydes and ketones can react with active-site serine
or cysteine, in this case forming hemiacetals or hemiketals. The
reaction is usually reversible, but the time scale can vary
greatly.16 Although this mechanism is not considered to be as
undesirable as the acylation mechanism described above,
specificity is still a problem, and most Lilly projects choose
not to screen the most reactive examples of this class, aldehydes
and electron-deficient ketones. Several rules identify latent
aldehydes and ketones, such as acetals and hemiacetals. These
structures are more stable when at least one heteroatom is
confined to a ring, as is seen naturally with sugars such as
glucose and ribose; structures in which one or both oxygens are
in a ring accrue 30 demerits, whereas those with neither oxygen
in a ring are rejected.
Alkylating Agents. There are 5 subclasses and 13 rules. The

reactivity of most of these is well-understood. An interesting
example is the alkylthio_N_aromatic rule. This group has a
reputation for lability under typical chemical reaction
conditions and may have toxicity liabilities as well, but it
seems to be stable under biological assay conditions and is not a
predictor of promiscuity (Table S1); hence, it is demerited and
not rejected. The prototypical compound of this class, 2-
(methylthio)pyridine, was not toxic to mammalian cells at
concentrations up to 1 mM.17

Chelators. This is a small class of seven rules. 8-
Hydroxyquinolines are rejected because they are common
nuisance hits, and crown-ether-like compounds are rejected
because of potential to act as ionophores in addition to their
poor druggability.
Color. The compounds matching these three rules (Table

S1) interfere with assays that have light emission or absorption
as readout. Additional rules might be profitably added to this
category. However, this problem is often controlled by creating
“no-screen” lists of compounds known to interfere in these
assays. Interference is often due to colored impurities, which

are usually related more closely to the origin and storage history
of the sample than to the nominal structure.

Halogen. There are 5 subclasses and 11 rules. Bromine is
given 34 demerits, adding up to a rejection (≥100 demerits)
with three or more under the regular rules. Chlorine and
fluorine begin accruing demerits at three and five incidences,
respectively. Other rules reflect oxidizing capability and/or
unusual valence.

Miscellaneous. There are 6 subclasses and 14 rules.
Compounds containing neither nitrogen nor oxygen are
rejected (“no_interesting_atoms”). Compounds with multiple
charges often have poor membrane permeability. After the
assignment of predicted charges at neutral pH (R.F.B. and
I.A.W., manuscript in preparation), each positive or negative
charge above 1 is counted as 50 demerits; triple positive or
negative charges (or doubles of both) are therefore rejected
under the regular rules.

Nitrogen. With 9 subclasses and 40 rules, the nitrogen class
is the second-largest family of rules. Aniline groups are known
to predispose toward problems with genetic toxicity.18

Electron-rich anilines are more subject to chemical or
enzymatic oxidation reactions. Eight rules for anilines are
given different demerit values calibrated roughly by electron
density. Aliphatic nitrogen attached to a heteroatom (N, O, or
S) tends to result in metabolic instability and/or toxicity; 10
rejection rules and 6 demerit rules are related to this theme.

Nuisance. The 4 subclasses and 12 rules of the nuisance
class cover structural themes that are known to be troublesome
but that fall outside other rule classes. Several (azapteridine,
naphthalene_sulfonate, benzocyclopentenone) capture chemo-
types that have shown promiscuous activity in previous Lilly
screening campaigns. The rules governing number of successive
methylenes (C4 through C7) relate to lack of druggability
attendant on excessive lipophilicity and flexibility.

Phosphorus. There are 4 subclasses and 10 rules. The 2
rules related to phosphate esters capture chemical series that
are often nonspecific inhibitors of serine hydrolases15 such as
acetylcholinesterase. Most of the remaining phosphorus rules
relate to the poor oral bioavailability of phosphates.

Protecting Group. The four protecting group rules (BOC,
FMOC, phthalimide, trityl) are markers for chemical
intermediates and predictors of excessive lipophilicity.

Quat. Quaternary amines usually do not cross the intestinal
wall and therefore are not useful as oral drugs. However, if a
quaternary amine is active, it is often possible to find the same
activity with a tertiary amine; hence, this motif is not rejected
but is penalized with 40 demerits. Aryl compounds with
quaternary nitrogens (e.g., N-alkylpyridinium) are often toxic,
for instance because of DNA intercalation,19 and are therefore
rejected.

Redox. Six of the seven redox rules refer to reducing agents
that can form peroxides by redox cycling;20 the peroxide rule
captures direct oxidants.

Ring. The 23 rules related to ring systems are divided into 5
subclasses. Most of these rules relate to druggability.21

Rejection reasons can include too many lipophilic rings
(cyclohexane, isolated_aromatic), excessively large ring systems
that can engender poor solubility (ring_system_too_large),
and ring systems with a propensity for promiscuity
(pyrrole_vinylidene, Table S1). Several rules for polyaromatic
ring systems flag potential mutagens and/or fluors (anthrace-
ne_het). Compounds without any rings are more common in
nondrug data sets such as ACD compared to drug data sets

Table 1. Summary of Rule Classes

rule class number of rules

acylating 51
aldehyde 29
alkylating 13
chelator 7
color 3
halogen 11
misc 14
nitrogen 40
nuisance 12
phosphorus 10
protecting group 4
quat 2
redox 7
ring 23
sulfur 19
vinyl 30
total 275
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such as MDDR (Table S1). The no_rings rule is a marker for
compounds that were not intended to be drugs (30 demerits).
Sulfur. Nineteen rules span nine subclasses. Sulfonic acids

usually have poor oral absorption;22 a single sulfonic acid incurs
40 demerits (sulfonic_acid rule) and the presence of two in the
same molecule triggers a rejection (too_many_sulfonate rule).
Thiols (70 demerits) bind nonspecifically to the metals in
metalloenzymes and can be unstable. Thiones (40 demerits)
are unstable and can hydrolyze into hydrogen sulfide.
Vinyl. There are 9 subclasses and 30 rules. Ten of the rules

relate to Michael acceptors, reverse Michael acceptors, or their
sulfur equivalents. For instance, the reverse_michael rule
matches an amine separated from a carbonyl by an ethane
linker. When protonated, the amine can dissociate, leaving a
vinyl ketone that can act as a Michael acceptor. Several vinyl
halide rules flag compounds with toxicity or promiscuity issues.
General Comments on the Queries. A common pattern of

many of the above rules is the identification of a functional
group likely to be reactive or unstable, the creation of a query
to identify such groups, and the refinement of the query to
exclude variations expected to be less troublesome. For
instance, the michael_rejected query excludes acrylic acids
(but not amides or esters) because the negative charge of the
carboxylate at neutral pH should ameliorate the electron-
withdrawing activity of the carbonyl, rendering the group much
less reactive as a Michael acceptor. Such exceptions can be
based on chemical theory (as in the previous example) or on
empirical evidence that particular molecules do not show
objectionable behavior. Although such refinements have been
made for several rules, it is simply not practical to enumerate a
detailed list of exceptions for every rule. For this reason, the
rules will occasionally be overaggressive. An interesting example
is the widely used antimalarial artemisinin23 (Figure 2). This

natural product contains an endoperoxide that is stabilized by
the surrounding cyclic structure. Unless an institution has a
specialized interest in such stabilized peroxides, it would not be
a productive use of time to create an exception to the peroxide
rejection rule to handle such cases.

Profile of the Structural Filters. The rules showed
distinctive patterns when profiled against five molecule
databases and against promiscuous and nonpromiscuous
compounds from the Lilly screening database (Table 2).
Three versions of the rules were used in the profiling: outright
rejections computed without the demerit rules, the relaxed rules
with a 160-demerit cutoff, and the regular rules with a 100-
demerit cutoff. Of the five data sets, the Lilly database showed
the lowest rate of outright rejections; this was not surprising,
considering that nearly half of Lilly inventory had its origin in
third-party purchases, almost all of which were filtered through
some version of the structural rules. ACD 2005 showed the
highest rate of outright rejections, mainly due to reactive
compounds used as synthetic reagents. Interestingly, the 2010
version of ACD had a much lower rejection rate, suggesting
that the rapid growth of that data set was fueled by addition of
innocuous compounds, presumably various simple building
blocks. The percentage of compounds failing on demerits
varied from 4.5% for ACD up to 21% for MDDR. These results
mostly reflect the relative content of larger compounds
incurring demerits for atom count.
The relatively high rate of outright rejections in the MDDR

data set is particularly noteworthy. Some of these include
analogues of drugs with “rough” mechanisms: platinum
complexes, alkylating antineoplastic agents, covalent-binding
anti-infectives, etc. These would not be considered useful leads
in contemporary drug screening programs. Others include
rationally designed chemical probes. Many of these contain
covalently binding electrophiles (aldehydes, electron-deficient
ketones, boronic acids) or metal-binding “warheads” (hydroxa-
mic acids, phosphonates). In many cases, the warheads
dominate the energetics of inhibition to the point that
variations in potency arise from structure−reactivity relation-
ships rather than structure−activity relationships. With this type
of mechanism, it is difficult to build in the exquisite selectivity
needed for a safe drug. Utility as a pharmacological tool can
also be compromised.24

Although commercially available “third-party” compounds
also had a high rate of outright rejections, vendors are
increasingly designing new additions to their collections with
druggability in mind.25

Rejection rates for promiscuous compounds were higher
than for nonpromiscuous compounds for all three levels of the
filters. However, even the more-stringent regular rules only
rejected about 36% of promiscuous compounds, suggesting that
promiscuity may not be easily predictable from structural cues
(see below for additional discussion of this issue). Conversely,

Figure 2. Artemisinin, a stable peroxide failing the rejection rules.

Table 2. Profiles of Various Data Sets against Three Versions of the Structural Filtersa

% fail

data set no. compds outright rejection relaxed regular no. rules matched % fail on demerits

third-party 4256596 25.2 37.4 42.4 257 17.2
ACD 2010.3 2242400 20.1 24.0 24.5 269 4.5
ACD 2005 341214 39.1 45.9 47.6 261 8.5
Lilly 873801 17.7 23.3 27.1 271 9.4
MDDR 191778 27.7 40.9 48.6 250 20.9
promiscuous 6165 24.5 31.2 35.7 166 11.1
nonpromiscuous 300877 10.9 16.4 20.0 255 9.0

a“Outright rejection” refers to structures that fail at least one rejection rule without respect to demerits. The relaxed and regular rules include the
effect of demerits, with cutoffs of 160 and 100 demerits, respectively. The promiscuous list was derived as described in the section Promiscuity Index.
The nonpromiscuous list consisted of compounds with at least 100 screening results that were active at two or fewer target subfamilies.
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many of the rules related to chemical reactivity are not
associated with elevated levels of promiscuity (Table S1). The
chemical groups in question may not be reactive enough, may
react with protein sites that are not critical for activity, or may
be so reactive that they break down in storage or during
aqueous dilution. Babaoglu et al.26 found that only about 1% of
the false positives in a β-lactamase screen were due to covalent
binders.
Best-Selling Drugs. Of a set of 123 best-selling drugs,27 19

failed the rules as an outright rejection and an additional 18
failed on demerits (Table S3). Many of the outright rejections
represented chemotypes that would not be considered useful
screening hits under current practices. For instance, penicillins
and cephalosporins are rejected because of their instability and
acylating activity, as discussed previously. A few rejected drugs
may represent examples where the rules are too aggressive, for
instance, the vinyl_nitro rule causing the rejection of ranitidine
(e.g., Zantac). Several steroids failed the Michael acceptor rule.
These are probably too sterically hindered to act as strong
Michael acceptors, but it would be difficult to devise a query to
exclude them. Many of the drugs that fail on demerits do so
because of molecular size. On the basis of the distinction
between leadlike and druglike compounds,24,28 these would not
be considered promising screening hits.
Promiscuity Index. Two recent publications4,5 focused on

creation of rejection rules to identify compounds that show
promiscuity in biological assays. Although some of the Lilly
rules were inspired by promiscuous compounds (see section
History of the Lilly Rules), these were based on a list of
nuisance hits compiled in 2000. Biological data in the Lilly data
warehouse have increased by nearly an order of magnitude
since then, providing an opportunity to broaden our under-
standing of promiscuity and assay interference.
The first task was to define promiscuity. It was immediately

apparent that simply counting the number of active targets
could give misleading results. For instance, compound 3
(Figure 3), example 69 from a VEGFR2 inhibitor patent,29 was

active in 86 kinase assays but did not show activity at any of
several dozen non-kinase targets. We would argue that 3 is not
promiscuous, as it interacts specifically with the hinge-binding
region of the kinase ATP binding site. The high number of
active targets is solely due to the fact that it binds to a motif
that exists in more than 500 copies in the human genome.
Compounds like 3 can radically skew an index of promiscuity

if not compensated for in some way. We chose a definition of
promiscuity that is insensitive to cross-activity at closely related
targets. The 584 targets with defined gene identifiers in the Lilly

data warehouse were divided into 17 target subfamilies: for
instance, GPCR-A, GPCR-B, metalloprotease, cysteine pro-
tease, etc. (see Table 3 for names of subfamilies). Because of
the high cross-correlations in activity between different kinase
clades, all kinases were aggregated into a single subfamily. The
promiscuity index was defined as the number of subfamilies at
which a compound was active. Generous cutoffs of IC50 < 10
μM or single-point inhibition of >90% were used to define
active targets. This allowed detection of promiscuous
compounds active in the low micromolar range; our experience
suggested that many of these will eventually be active in the
submicromolar range when tested against a particularly
sensitive target. Single-point inhibition of >90% was used
because in assays with high hit rates, many single-point hits
were never tested in concentration−response mode because of
resource constraints.
Compounds with results in at least 100 assays were binned

according to the number of subfamilies at which they were
active (Figure 4). The number of compounds per bin in this
histogram dropped off exponentially with the number of active
subfamilies. Despite a conscious effort to devise rules that
would exclude promiscuous compounds, failure rates never
exceeded 50% except for the three compounds that were active
at 12 subfamilies. Those three all failed the bis_aryl_maleimide
rule, as discussed below. Nevertheless, failure rates rose with
the number of subfamilies active, and this trend was seen for
both outright rejections and failures for demerits.
Examples of compounds active at six or more subfamilies are

given in Table 3 and Figure 5. Most of the compounds passing
the structural filters (columns 1 and 3 of Figure 5) seem too
simple to be causing widespread cross-activity, and it is likely
that the activity is due to contaminants. For instance, a close
analogue of 10 was active at a cysteine protease; an X-ray
structure after cocrystallization with the enzyme revealed an
empty binding site except for two atoms of a heavy metal,
probably palladium or zinc left over from a catalytic coupling
(Shane Atwell, personal communication). We have seen several
other examples of undocumented or residual heavy metals in
compound samples and speculate that this phenomenon may
be far more common than generally realized. At the cysteine
protease mentioned above, we saw several signs that many of
the hits may have been due to contaminants. For instance,
simple, innocuous structures with no obvious reactive groups
produced irreversible inhibition. On the basis of these
observations, the team decided to repurify a diverse selection
of the hits and found that 38 out of 40 were inactive after
repurification (R.F.B., Michael R. Wiley, and Douglas R. Stack,
unpublished observations). The remaining two were irrever-
sible; one had a potential reactive group (carbamate) and the
other had a structure capable of carrying a tightly bound heavy
metal through the purification. Contaminants may also be
responsible for other types of interference. For instance,
reduction of resazurin to resorufin is a sensitive method for
detecting redox cycling.30,31 However, when we attempted to
model 3000 data points from this assay, we achieved a q2 of
only 0.1, suggesting that activity was unrelated to structure and
possibly due to contaminants. Leaching of polyanions from
cation exchange resins (SCX) used to purify final products was
a frequent source of false hits in the 1990s; more recently,
better practices including extensive prewashing of the columns
and better quality control by manufacturers have reduced the
problem. However, our recent experience suggests that this
problem persists to some extent even in newer samples, and in

Figure 3. Example of a compound active at multiple targets within a
single target subfamily (kinases).
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addition many of the older samples remain in the compound
collection and may cause false hits if they enter the screening
queue. It should be noted that neither heavy metals nor
polymeric contaminants will show up in LC/MS and NMR
analyses. Baell32 reported that carry-through of synthetic
intermediates can result in promiscuous activity; the tetrahy-
droquinoline series mentioned by Baell has shown widespread
activity at Lilly targets and is now the subject of a rejection
query (see section Evaluation of PAINS Queries).
The results with regard to contamination cited above show

that there are limits to the extent that promiscuous compounds
can be removed by substructure filters alone. For this reason,
we decided to create a “no-screen” list of compounds that
showed promiscuity in biological assays. An immediate concern
was where to draw the line between promiscuous and
nonpromiscuous. Checking of activity profiles and structures
indicated that compounds active at six or more subfamilies were
unlikely to be innocent. This list included known non-
productive hits from several historical screening campaigns.
The same was true for compounds active at five subfamilies,
with one exception: compounds with a positive charge that
were active at type A GPCR, ion channel, and transporter
subfamilies often showed typical pharmacophoric features for
activity at biogenic amine targets.33 An example is the
antipsychotic chlorpromazine (Figure 6). Taking this into
account, compounds active at exactly five subfamilies were
included in the promiscuous list except when they had a basic
group and were active in at least two of the following
subfamilies: type A GPCR, ion channel, and transporter.
Compounds active at four or fewer subfamilies were excluded
from the promiscuous list. Since active compounds from
previous projects are often purposely over-represented in
screening decks, it is not uncommon to see a chemical series
recycled into two or even three projects. For instance, we are
aware of a series that produced a clinical candidate for a type A
GPCR target, then later produced hits for an ion channel target,
and subsequently yielded hits at an enzyme target. The
specificity of interactions was confirmed by achievement of
single-digit nanomolar affinity for all three targets as well as
production of a protein−ligand X-ray structure for the enzyme
target.
In chemical databases, compounds are characterized by serial

number, linked uniquely to chemical structure, and by lot
number, linked uniquely to the batch of compound that was
synthesized or purchased. Since promiscuity often originatesT
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Figure 4. Failure rates for structural filters as a function of promiscuity.
Only compounds with at least 100 screening results were included in
the analysis (306 461 compounds). Since demerit queries are only run
on compounds passing the outright rejection rules, the failure rate for
demerit filters was defined relative to number of compounds passing
the outright rejection rules.
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from impurities in a given batch of a compound, promiscuity
should ideally be computed versus lot number. Although most
large biological databases do link activity to lot number, in
many cases the tools for data retrieval key on serial number;
these tools will need to be modified to assign promiscuity
scores to chemical lot numbers.
Evaluation of PAINS Queries. Baell and Holloway5

recently reported a series of structural filters based on
promiscuous activity at six screening targets for a test set of
93 000 compounds. We wished to evaluate the PAINS queries
against our large internal results database. Because the main
purpose was to identify gaps in the Lilly filters, we began with
two lists of compounds that passed the regular Lilly rules: 4351
promiscuous compounds as defined above and 242 466
nonpromiscuous compounds, defined as those tested at least

100 times that were active versus two or fewer subfamilies. An
enrichment factor was defined as the match rate for the
promiscuous set divided by the match rate for the non-
promiscuous set. The PAINS queries matched 286 promiscu-
ous compounds that passed the Lilly rules, compared to 3986
in the nonpromiscuous set, for an enrichment factor of 4.0.
Although 67 PAINS queries matched at least one promiscuous
compound, only nine queries matched at least five promiscuous
compounds and had an enrichment of at least 5. Compounds
matching these nine queries were examined in detail, and new
rules or modifications of existing rules were created for six of
them (Table 4). (We were unable to incorporate the PAINS
queries directly into our filters because our substructure engine
cannot read the Tripos query language used for the PAINS
queries.)

Evaluation of BMS Queries. A set of 191 structural filters
coded in smarts was reported by investigators from Bristol-
Myers Squibb.4 The filters were motivated in part by
promiscuity data distilled from about 60 million biological
assay results. Three of the queries matched at least five
promiscuous compounds with an enrichment factor of 5 or
better (Table 5). The smarts for these three queries were
incorporated directly into the Lilly rules.

Additional Promiscuity-Related Rules. Promiscuous
compounds passing the Lilly rules were clustered by scaffold,
and clusters with at least six members were examined. By far the
most prominent cluster was a set of 370 bis-arylmaleimides

Figure 5. Structures of compounds from Table 3.

Figure 6. Chlorpromazine. This compound is active at five subfamilies,
including biogenic amine related targets in the type A GPCR, ion
channel, and transporter subfamilies.

Journal of Medicinal Chemistry Article

dx.doi.org/10.1021/jm301008n | J. Med. Chem. 2012, 55, 9763−97729770



(BAMs). The BAMs are potent, broadly active kinase inhibitors
related to the natural product staurosporine.34 Widespread
activity at non-kinase targets is probably related to
aggregation.35 Lilly’s experience with following up on BAM
hits at non-kinase targets has not been productive. At the same
time, representative BAMs have already been profiled at a wide
variety of kinase targets, diminishing the value of additional
screening. For these reasons, a rejection rule for BAMs was
created.
Several other large clusters consisted of small, apparently

innocuous compounds. It is likely that promiscuity of these
compounds is due to contaminants.
Several publications from the Shoichet group describe

aggregation as a source of promiscuous activity.3,36−38 We
checked for exact matches in the Lilly collection of compounds
listed as aggregators in Table S5 from Feng et al.36 Selection
criteria were >50% inhibition of β-lactamase at 30 μM and
SCATTER or SCATTER_80 rating in dynamic light scattering.
Eleven exact matches had at least 100 testing results, but none
were active at more than two subfamilies. Although based on a
limited sample size, these results suggest that aggregation is not
a major source of promiscuity under current screening
practices, in which detergent is added to prevent aggregation-
based inhibition.39

■ CONCLUSIONS
In this paper, we provide an account of structural queries
designed to remove compounds that are likely to provide
invalid or misleading screening results. These include
compounds that are unstable, whose screening results might
not be attributable to the nominal structure; reactive

compounds whose activity could be due to undesirable covalent
modification of proteins; compounds that interfere with activity
measurements; promiscuous compounds that are active at
multiple target families; and compounds that would not be
considered for follow-up because of toxicity, poor stability in
vivo, etc. The rules are used to filter primary and follow-up
screensets, to triage compounds being considered for purchase,
and as alerts for compounds being proposed for synthesis.
Details of the queries and search engine are included, along
with experience motivating the rules. We also present a novel
index of promiscuity based on the number of target subfamilies
at which a compound is active. We find that the application of
these tools significantly reduces the amount of time devoted to
following up on unproductive screening actives.

■ ASSOCIATED CONTENT

*S Supporting Information
A pdf file containg detailed description of the substructure
search engine, legend to Table S1 (individual rules), Table S2
(smiles for an example structure for each rule), Table S3
(outcomes of rules for best-selling drugs), and text of
substructure queries; an Excel file containing the contents of
Table S1 (individual rules and information on number of
matches). This material is available free of charge via the
Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author
*Phone: 317 276-5374. E-mail: bruns_robert_f@lilly.com.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank Steve Kaldor and Bill Heath for their contributions to
early versions of the rules; Mike Myers, P.K. Jadhav, Lou
Jungheim, Mike Coghlan, Mic Lajiness, Tom Doman, and John
Lampe for providing their expertise in reviewing the rules in
2004; Jim Wikel for sponsoring the review; Mike Coghlan and
Jibo Wang for suggestions on improving the manuscript; Jeff
Sutherland for writing the database query scripts that underlie
the computation of the promiscuity index; and the reviewers for
alerting us to the problems of rationally designed chemical
“warheads” in screening databases.

Table 4. PAINS Rules Matching at Least Five Promiscuous Compounds and Having at Least 5-Fold Enrichment for
Promiscuous over Nonpromiscuous Compoundsa

PAINS rule no. not promiscuous no. promiscuous enrichment outcome

quinone_A 7 5 39.80 broaden existing quinone_para rule
quinone_B 13 7 30.01 new rule anthra_ketone
naphth_amino_A 73 18 13.74 new rule perimidine
anil_alk_ene 119 25 11.71 new rule fused_tetrahydroquinoline
imidazole_A 85 17 11.15 skip; several literature kinase inhibitors fail
cyano_pyridone_A 31 5 8.99 matches milrinone (marketed PDE inhibitor)
anil_di_alk_B 105 14 7.43 4-vinylaniline query not specific enough; dye marker?
ene_one_hal 48 5 5.80 change existing anthracene_het rule to rejection
thiophene_amino_Aa 49 5 5.69 boost existing thiophene_furan_nh rule to 70 demerits
all matches 3986 286 4.00

aThe PAINS rules were run under Sybyl using the original queries from Baell and Holloway.5 Enrichment is the fraction matching in the
promiscuous set divided by the fraction matching in the nonpromiscuous set.

Table 5. BMS Rules Matching at Least Five Promiscuous
Compounds and Having at Least 5-Fold Enrichment for
Promiscuous over Nonpromiscuous Compounds

BMS rule
no. not

promiscuous
no.

promiscuous enrichment outcome

quinone_methide 33 10 17.16 create new
rule from
smarts

rhodanine 43 5 6.59 create new
rule from
smarts

non_ring_ketal 101 10 5.61 create new
rule from
smarts

all matches 12245 191 0.88
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■ ABBREVIATIONS USED

ACD, Available Chemicals Directory; BAM, bis-arylmaleimide;
BMS, Bristol-Myers Squibb; MACCS, molecular access system;
MDDR, MDL Drug Data Report; OIDD, Open Innovation
Drug Discovery; PAINS, pan assay interference compounds;
VEGFR2, vascular endothelial growth factor receptor 2
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